LINEAR AND POLYNOMIAL FUNCTIONS

Math 130 - Essentials of Calculus

11 September 2019

Reminder: Slope of a Line

The slope of a line is a measure of its "steepness." Positive indicating upward, negative indicating downward, and the greater the absolute value, the steeper the line.

REMINDER: SLOPE OF A LINE

The slope of a line is a measure of its "steepness." Positive indicating upward, negative indicating downward, and the greater the absolute value, the steeper the line. Intuitively,

$$slope = \frac{rise}{run} = \frac{\text{change in } y}{\text{change in } x}.$$

Reminder: Slope of a Line

The slope of a line is a measure of its "steepness." Positive indicating upward, negative indicating downward, and the greater the absolute value, the steeper the line. Intuitively,

$$slope = \frac{rise}{run} = \frac{\text{change in } y}{\text{change in } x}.$$

More concretely, if a line passes though the points (x_1, y_1) and (x_2, y_2) , then the slope of the line is given by

$$m=\frac{y_2-y_1}{x_2-x_1}$$

REMINDER: SLOPE OF A LINE

The slope of a line is a measure of its "steepness." Positive indicating upward, negative indicating downward, and the greater the absolute value, the steeper the line. Intuitively,

$$slope = \frac{rise}{run} = \frac{\text{change in } y}{\text{change in } x}.$$

More concretely, if a line passes though the points (x_1, y_1) and (x_2, y_2) , then the slope of the line is given by

$$m=\frac{y_2-y_1}{x_2-x_1}=\frac{\Delta y}{\Delta x}.$$

REMINDER: SLOPE OF A LINE

The slope of a line is a measure of its "steepness." Positive indicating upward, negative indicating downward, and the greater the absolute value, the steeper the line. Intuitively,

$$slope = \frac{rise}{run} = \frac{\text{change in } y}{\text{change in } x}.$$

More concretely, if a line passes though the points (x_1, y_1) and (x_2, y_2) , then the slope of the line is given by

$$m=\frac{y_2-y_1}{x_2-x_1}=\frac{\Delta y}{\Delta x}.$$

Given the slope of a line, m, and a point it passes though (x_1, y_1) , an equation for the line is

$$y-y_1=m(x-x_1).$$

A very important interpretation of slope is as a "rate of change." For example, a slope of 3 would mean that making a change in input would cause a change in output that is 3 times larger.

A very important interpretation of slope is as a "rate of change." For example, a slope of 3 would mean that making a change in input would cause a change in output that is 3 times larger. A feature of lines is that they have constant, non-changing slopes, so functions whose graphs are lines (called *linear functions*) grow at a constant rate, or have a constant rate of change.

A very important interpretation of slope is as a "rate of change." For example, a slope of 3 would mean that making a change in input would cause a change in output that is 3 times larger. A feature of lines is that they have constant, non-changing slopes, so functions whose graphs are lines (called *linear functions*) grow at a constant rate, or have a constant rate of change. When writing a linear function, we will write it in *slope-intercept* form

$$f(x) = mx + b$$

where *b* is the *y*-intercept of the function.

A very important interpretation of slope is as a "rate of change." For example, a slope of 3 would mean that making a change in input would cause a change in output that is 3 times larger. A feature of lines is that they have constant, non-changing slopes, so functions whose graphs are lines (called *linear functions*) grow at a constant rate, or have a constant rate of change. When writing a linear function, we will write it in *slope-intercept* form

$$f(x) = mx + b$$

where *b* is the *y*-intercept of the function.

EXAMPLE

The weekly ratings, in millions of viewers, of a recent television program are given by L(w), where w is the number of weeks since the show premiered. If L is a linear function where L(8) = 5.32 and L(12) = 8.36, compute the slope of L and explain what it represents in this context. Write a formula for L(w).

Now You Try It!

EXAMPLE

The monthly cost of driving a car depends on the number of miles driven. Lynn found that in May is cost her \$380 to drive 480 miles and in June it cost her \$460 to drive 800 miles.

- Express the monthly cost C as a function of the distance driven d, assuming that there is a linear relationship.
- Use part 1 to predict the cost of driving 1500 miles per month.
- What does the slope represent?

A function *P* is called a *polynomial* if it can be written in the form

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$
 $a_n \neq 0$

where n is a nonnegative integer.

A function *P* is called a *polynomial* if it can be written in the form

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$
 $a_n \neq 0$

where n is a nonnegative integer. The numbers $a_0, a_1, a_2, ..., a_n$ are called the *coefficients* of the polynomial.

A function *P* is called a *polynomial* if it can be written in the form

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_2 x^2 + a_1 x + a_0$$
 $a_n \neq 0$

where n is a nonnegative integer. The numbers $a_0, a_1, a_2, ..., a_n$ are called the *coefficients* of the polynomial. The value of the largest exponent n is called the *degree* of the polynomial.

A function *P* is called a *polynomial* if it can be written in the form

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$
 $a_n \neq 0$

where n is a nonnegative integer. The numbers $a_0, a_1, a_2, ..., a_n$ are called the *coefficients* of the polynomial. The value of the largest exponent n is called the *degree* of the polynomial. The domain of any polynomial is always $\mathbb{R} = (-\infty, \infty)$. (\mathbb{R} is the symbol we often use to denote "all real numbers.")

Polynomials of degree 2 are called *quadratic functions*. These look like $f(x) = ax^2 + bx + c$ ($a \ne 0$). Their graphs are always parabolas and are always some transformation of $y = x^2$.

Polynomials of degree 2 are called *quadratic functions*. These look like $f(x) = ax^2 + bx + c$ ($a \ne 0$). Their graphs are always parabolas and are always some transformation of $y = x^2$. The point where the parabola changed direction (the top or bottom of the shape) is known as the *vertex* of the parabola.

Polynomials of degree 2 are called *quadratic functions*. These look like $f(x) = ax^2 + bx + c$ ($a \ne 0$). Their graphs are always parabolas and are always some transformation of $y = x^2$. The point where the parabola changed direction (the top or bottom of the shape) is known as the *vertex* of the parabola. By completing the square we can write any quadratic function in the form

$$f(x)=a(x-h)^2+k.$$

Polynomials of degree 2 are called *quadratic functions*. These look like $f(x) = ax^2 + bx + c$ ($a \ne 0$). Their graphs are always parabolas and are always some transformation of $y = x^2$. The point where the parabola changed direction (the top or bottom of the shape) is known as the *vertex* of the parabola. By completing the square we can write any quadratic function in the form

$$f(x) = a(x-h)^2 + k.$$

Written this way, the vertex of the parabola is at the point (h, k) and the number a tells us whether the parabola opens up (a > 0) or down (a < 0) and how stretched or compressed it is (the value of |a|).

Polynomials of degree 2 are called *quadratic functions*. These look like $f(x) = ax^2 + bx + c$ ($a \ne 0$). Their graphs are always parabolas and are always some transformation of $y = x^2$. The point where the parabola changed direction (the top or bottom of the shape) is known as the *vertex* of the parabola. By completing the square we can write any quadratic function in the form

$$f(x) = a(x-h)^2 + k.$$

Written this way, the vertex of the parabola is at the point (h, k) and the number a tells us whether the parabola opens up (a > 0) or down (a < 0) and how stretched or compressed it is (the value of |a|).

EXAMPLE

Graph the following quadratic functions.

$$f(x) = \frac{1}{2}(x-1)^2 - 2$$

Polynomials of degree 2 are called *quadratic functions*. These look like $f(x) = ax^2 + bx + c$ ($a \ne 0$). Their graphs are always parabolas and are always some transformation of $y = x^2$. The point where the parabola changed direction (the top or bottom of the shape) is known as the *vertex* of the parabola. By completing the square we can write any quadratic function in the form

$$f(x) = a(x-h)^2 + k.$$

Written this way, the vertex of the parabola is at the point (h, k) and the number a tells us whether the parabola opens up (a > 0) or down (a < 0) and how stretched or compressed it is (the value of |a|).

EXAMPLE

Graph the following quadratic functions.

$$f(x) = \frac{1}{2}(x-1)^2 - 2$$

$$C(x) = -2(x-3)^2 - 4$$

A *cubic function* is a function of the form

$$f(x) = ax^3 + bx^2 + cx + d$$
 $(a \neq 0).$

A *cubic function* is a function of the form

$$f(x) = ax^3 + bx^2 + cx + d$$
 $(a \neq 0).$

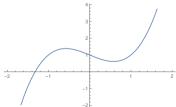
A degree four polynomial is called a *quartic function* and degree five is called a *quintic function*.

A *cubic function* is a function of the form

$$f(x) = ax^3 + bx^2 + cx + d$$
 $(a \neq 0).$

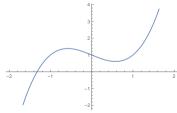
A *cubic function* is a function of the form

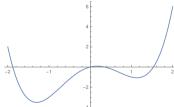
$$f(x) = ax^3 + bx^2 + cx + d$$
 $(a \neq 0).$



A *cubic function* is a function of the form

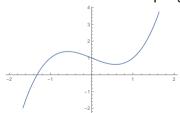
$$f(x) = ax^3 + bx^2 + cx + d$$
 $(a \neq 0).$

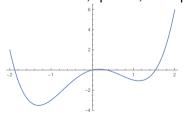


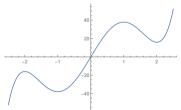


A *cubic function* is a function of the form

$$f(x) = ax^3 + bx^2 + cx + d$$
 $(a \neq 0).$







DEFINITION

A function f is said to be

• increasing if the output values increase as the input values increase

DEFINITION

A function f is said to be

- increasing if the output values increase as the input values increase
- decreasing if the output values decrease as the input values increase

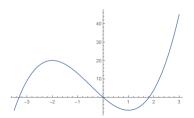
DEFINITION

A function f is said to be

- increasing if the output values increase as the input values increase
- decreasing if the output values decrease as the input values increase

EXAMPLE

Find the intervals on which the graphs below are increasing and decreasing



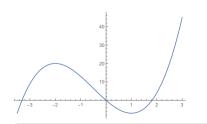
DEFINITION

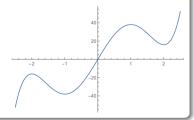
A function f is said to be

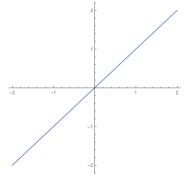
- increasing if the output values increase as the input values increase
- decreasing if the output values decrease as the input values increase

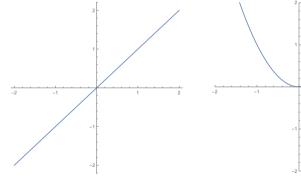
EXAMPLE

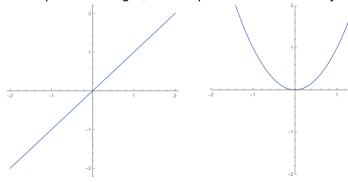
Find the intervals on which the graphs below are increasing and decreasing

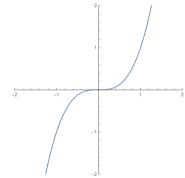


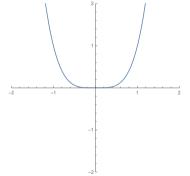


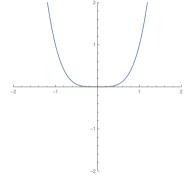


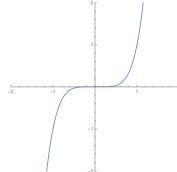


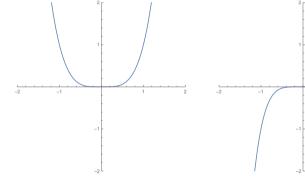


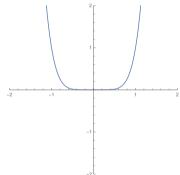






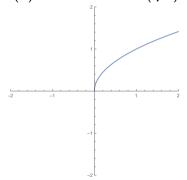




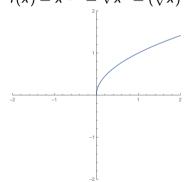


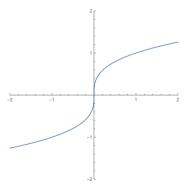
Below are graphs of
$$f(x) = x^{1/2} = \sqrt{x}$$
, $f(x) = x^{1/3} = \sqrt[3]{x}$, and $f(x) = x^{2/3} = \sqrt[3]{x^2} = (\sqrt[3]{x})^2$

Below are graphs of
$$f(x) = x^{1/2} = \sqrt{x}$$
, $f(x) = x^{1/3} = \sqrt[3]{x}$, and $f(x) = x^{2/3} = \sqrt[3]{x^2} = (\sqrt[3]{x})^2$

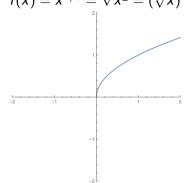


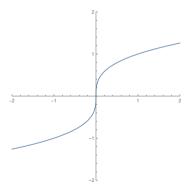
Below are graphs of
$$f(x) = x^{1/2} = \sqrt{x}$$
, $f(x) = x^{1/3} = \sqrt[3]{x}$, and $f(x) = x^{2/3} = \sqrt[3]{x^2} = (\sqrt[3]{x})^2$

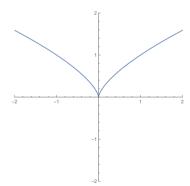




Below are graphs of
$$f(x) = x^{1/2} = \sqrt{x}$$
, $f(x) = x^{1/3} = \sqrt[3]{x}$, and $f(x) = x^{2/3} = \sqrt[3]{x^2} = (\sqrt[3]{x})^2$

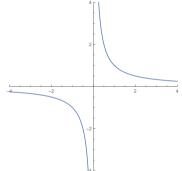




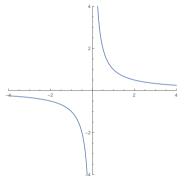


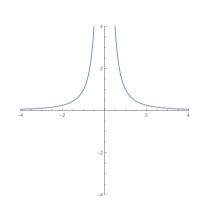
Below are graphs of
$$f(x) = x^{-1} = \frac{1}{x}$$
 and $f(x) = x^{-2} = \frac{1}{x^2}$

Below are graphs of
$$f(x) = x^{-1} = \frac{1}{x}$$
 and $f(x) = x^{-2} = \frac{1}{x^2}$

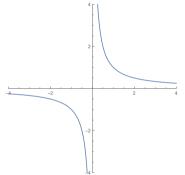


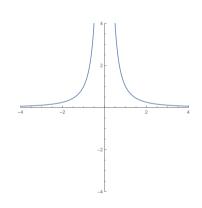
Below are graphs of
$$f(x) = x^{-1} = \frac{1}{x}$$
 and $f(x) = x^{-2} = \frac{1}{x^2}$





Below are graphs of
$$f(x) = x^{-1} = \frac{1}{x}$$
 and $f(x) = x^{-2} = \frac{1}{x^2}$





 $f(x) = \frac{1}{x}$ is also known as the *reciprocal function*.